1. Проекты в стадии реализации

1.1 Эксперименты ОМЕГА, СПИКАМ, ПФС

на космическом аппарате ЕКА «Марс Экспресс»

Европейский космический аппарат «Марс Экспресс» запущен с космодрома Байконур 3 июня 2003г. Научные наблюдения ведутся с 4 января 2004г. В январе 2016 г исполнилось 12 лет с начала работы комплекса научной аппаратуры для исследования поверхности, атмосферы и климата планеты Марс.

В составе комплекса научной аппаратуры продолжают работать три спектрометрических прибора, разработанные с российским участием. В ИКИ РАН изготовлены входная оптика и сканер картирующего спектрометра ОМЕГА, детекторы и калибровочное оборудование для Фурье-спектрометра ПФС и инфракрасный канал универсального спектрометра СПИКАМ. Все три эксперимента в целом функционируют номинально, некоторые недочеты связаны с шестикратным превышением запланированного ресурса работы:

- Прибор ОМЕГА (российский сканер): в связи с износом охладителя детекторов после многократного превышения гарантированного времени наработки с 2010г не работает канал SWIR. Прибор продолжает наблюдения в двух оставшихся каналах VIS (не требует охлаждения) и MWIR (охладитель в рабочем состоянии). Российский сканер прибора работает с небольшими ограничениями по тепловому режиму, не влияющими на качество получаемых научных результатов.
- Прибор СПИКАМ (российский ИК спектрометр). С мая 2015 г УФ-канал прекратил работу из-за отказа преобразователя высокого напряжения. С этого момента все ресурсы эксперимента СПИКАМ отданы российскому ИК-каналу прибора. Российский канал ИК-спектрометр на базе акустооптического перестраиваемого фильтра (АОПФ) продолжает работу без замечаний.
- Прибор ПФС (российские детекторы) –без замечаний.

Производилась оперативная оценка технического состояния, проверка функционирования научных приборов и планирование наблюдений. Продолжается накопление и анализ длинных рядов измерений. Так, по данным ИК-канала прибора СПИКАМ опубликованы результаты многолетнего мониторинга свечения молекулярного кислорода, наиболее чувствительного индикатора фотохимических процессов в атмосфере Марса 5 марсианских лет [Guslyakova et al., 2016].

22 ноября 2016г комитет научных программ ЕКА продлил управление КА «Марс Экспресс» до конца 2018г. КА находится в хорошем состоянии и обладает достаточным резервом топлива для разгрузки гиродинов. Большинство приборов научного комплекса КА сохраняют работоспособность.

После запуска КА "ЭкзоМарс" в марте 2016 г проведено планирование наблюдений спектральными приборами КА "Марс Экспресс" для калибровки и валидации приборов "ЭкзоМарс ТGO", российского комплекса АЦС и бельгийского спектрометра NOMAD. Программа скорректирована для уточнения небесно-механических параметров после выхода КА "ЭкзоМарс TGO" на промежуточную 4х- суточную орбиту 19 октября 2016г. Эти наблюдения должны обеспечить фотометрические измерения приборами ПФС, ОМЕГА и СПИКАМ-ИК тех же участков поверхности, что и наблюдаемые КА "ЭкзоМарс TGO" во время проверочных включений 22-28 ноября 2016г.

1.2 Эксперименты спектрометрический комплекс АЦС, нейтронный спектрометр ФРЕНД для КА ЕКА Trace Gas Orbiter, проект «ЭкзоМарс16»

(шифр темы – научный сотрудник

«ЭкзоМарс-СП», «ЭкзоМарс-ЯФ»)

Заказчик – Федеральное космическое агентство.

Орбитальный KA TGO (Trace Gas Orbiter) предназначен для изучения малых газовых примесей атмосферы в рамках проекта «ЭкзоМарс-2016». ИКИ РАН разработал два прибора для KA TGO:

- 1) Спектрометрический комплекс АЦС (ACS Atmospheric Chemistry Suite) предназначен для изучения химического состава атмосферы и климата Марса. Он состоит из трех спектрометров (эшелле-спектрометры ближнего и среднего ИК диапазона и Фурье-спектрометр) и системы сбора информации.
- 2) Коллимированный нейтронный детектор ФРЕНД (FREND Fine Resolution Epithermal Neutron Detector) предназначен для регистрации альбедных нейтронов, возникающих в грунте Марса под воздействием галактических и солнечных космических лучей, и построения с высоким пространственным разрешением глобальных карт распределения водяного льда в верхнем слое грунта Марса. ФРЕНД также включает в себя блок дозиметрии.

КА ТGO был успешно запущен в марте 2016 года и в октябре 2016 года вышел на орбиту Марса. Спектрометрический комплекс АЦС и нейтронный спектрометр ФРЕНД успешно прошли включения и калибровки во время перелета к Марсу. Наблюдения в рамках научной программы на переходной высокоэллиптической орбите стартуют в конце ноября 2016 года и продлятся до марта 2017 года, когда начнется процесс торможения КА в атмосфере Марса. После выхода на круговую орбиту в конце 2017 года начнется номинальная научная программа.

2. Проекты в стадии ОКР

2.1 Проект «ЭкзоМарс-2020»

В рамках миссии «ЭкзоМарс-2020» года на поверхность Марса с помощью разрабатываемого в России во ФГУП «НПО им С.А. Лавочкина» десантного модуля будет доставлен марсоход ЕКА массой около 300 кг.

Задачами марсохода являются геологические исследования и поиск следов жизни в подповерхностном слое Марса. ИКИ РАН разрабатывает два прибора для установки на марсоход: инфракрасный спектрометр ИСЕМ и нейтронный спектрометр АДРОН-РМ. ИСЕМ представляет собой инфракрасный спектрометр, устанавливаемый на мачте марсохода и служащий для минералогического анализа поверхности. АДРОН-РМ используется для регистрации нейтронного альбедо, генерируемого космическими лучами в грунте и зависящего от количества водяного льда в нём, и построения локальной карты распределения водяного льда вдоль трассы движения марсохода. В настоящий момент завершено изготовление макетов приборов ИСЕМ и АДРОН-РМ и идет изготовление штатных образцов.

После схода марсохода с посадочной платформы, последняя начнет свою научную миссию как долгоживущая стационарная платформа (ожидаемый срок жизни – один земной год). Комплекс научной аппаратуры (КНА-ЭМ) массой 45 кг (13 приборов) разрабатывается под руководством ИКИ РАН. Основные научные задачи КНА:

- долговременный мониторинг климатических условий на марсианской поверхности в месте посадки;
- исследование состава атмосферы Марса с поверхности;
- мониторинг радиационной обстановки в месте посадки.
- исследование взаимодействия атмосферы и поверхности;
- изучение распространенности воды в подповерхностом слое.

В настоящий момент идет изготовление макетов приборов КНА-ЭМ.

2.2 Спектрометрические приборы с российским участием в проекте ESA и JAXA «Бепи Коломбо»

В рамках темы «Бепи Коломбо» продолжается работы по испытаниям летной аппаратуры в составе научного комплекса из европейского MPO, японского MMO и перелетного модуля для полета на Меркурий. В составе MPO проходит испытания ультрафиолетовый спектрометр ФЕБУС, где используется российский входной оптический блок с системой наведения прибора в заданном направлении. А в составе ММО проходит испытания натриевая камера МСАСИ, в которой используется российский блок оптикомеханической развертки для получения изображения. Запуск КА «Бепи Коломбо» к Меркурию планируется в 2018 г.

2.3 Проект «Планетный Мониторинг»

Разработка космического телескопа «Планетный мониторинг» (ПМ) СЧ ОКР («ОАО "РКК "Энергия"») http://knts.tsniimash.ru/ru/site/Experiment_q.aspx?idE=90.

Запланированы подготовка КЭ: 2017..2018 гг., проведение с 2019 г. КЭ «Планетный мониторинг» — эксперимент по наблюдению планет и малых тел Солнечной системы и технологической отработке наблюдения экзопланет.

Уточнен состав кооперации и заключается договор на разработку рабочей документации и изготовление опытного образца КНА ПМ... »

2.4 «Комплекс дополнительной НА для исследования экзопланет»

Разработка Блока Камер Поля (БКП) оптического телескопа «Спектр-УФ», диаметром 1,7 м, с планируемым запуском в 2021 г. Согласованы предложения по дополнительным инструментам по исследованию экзопланет спектральным УФ исследованием корон экзопланет в линиях водорода, кислорода и азота, а также по звездному коронографу в видимом диапазоне для получения изображения экзопланет в зоне обитания. Данная кооперация развивается с участием японских коллег из университета Риккё, г. Токио и Японской Национальной Астрономической Обсерватории (NAOJ) и Центра Астробиологии, Токио. Материалы разработок согласовано представить в ДЭП на БКП.

2.5 Проект « Дриада»

Целью космического эксперимента «Дриада», проводимого ИКИ РАН, является накопление данных измерений спектров поглощения атмосферной углекислоты и метана в течение не менее 3х лет, для дальнейшего исследования распределения и трендов концентраций парниковых газов в земной атмосфере. Ключевым узлом аппаратуры является двухканальный инфракрасный спектрометр

высокого разрешения, записывающий спектры поглощения в ближнем ИК-диапазоне. Концентрация СО2 определяется по ненасыщенной полосе 1,58 мкм, СН4 – по полосе 1,65 мкм. Кроме того, измеряются две полосы поглощения атмосферного кислорода 1,27 мкм и 0,76 мкм, которые используются при обработке в качестве каналов сравнения для определения эффективной воздушной массы при наличии аэрозоля. В отдельный канал всего комплекса аппаратуры выделен инфракрасный спектрометр на кислородную полосу 0,76 мкм.

Ожидаемые результат КЭ:

- Будет отработана технология создания компактных спектрометров высокого спектрального разрешения и светосилы для работы в открытом космосе;
- Для непрерывного покрытия освещенных участков орбит будет получены массивы калиброванных спектров пропускания атмосферы в ближнем ИК диапазоне для надирных измерений для восстановления концентраций парниковых газов (данные 1 уровня);
- Благодаря использованию платформы наведения будет набрана уникальная статистика спектров пропускания по наблюдению бликов для последующей обработки в более простом приближении, что позволит повысить точность и достоверность выходных научных данных;
- Будут получены массивы концентраций парниковых газов в континентальных районах для различных сезонов в от экватора до $\pm 52^{\circ}$ широты (данные 2 уровня) для дальнейшего анализа

В 2016 году были завершены два этапа договора между ИКИ РАН и РКК Энергия по работам КЭ Дриада: «Разработка КД и ЭД на КПА. Разработка ПО КПА.» и

«Изготовление КПА НА.». По этапу работы "Разработка КД и ЭД на макеты и образцы" была выявлена необходимость корректировки ТЗ, в настоящий момент дополнение к ТЗ проходит необходимые согласования в РКК Энергия.

2.6 Проект СПЕКТР-РЕНТГЕН-ГАММА «Спектр-РГ»

Орбитальная обсерватория «Спектр-Рентген-Гамма» предназначена для обзора всего неба зеркальными рентгеновскими телескопами в жестком диапазоне энергий (0,5—11 килоэлектрон-вольт, или кэВ). Обзор станет рекордным в этом диапазоне энергий благодаря высокой чувствительности, которая обеспечивается большой эффективной площадью зеркальных систем, высоким угловым разрешением оптики и исключительно широким для таких телескопов полем зрения. В состав научной аппаратуры обсерватории включено два зеркальных рентгеновских телескопа: eROSITA (Германия) — основной инструмент миссии, весом 760 кг, работающий в диапазоне энергий 0,5—10 кэВ и, прибор ART-XC (Россия), весом 350 кг, дополняющий немецкий инструмент в более жестком диапазоне энергий 6 - 30 кэВ. Обсерватория будет выведена на орбиту в окрестностях точки L2 — одной из пяти существующих в системе Солнце — Земля точек либрации, в которых возмущающие гравитационные воздействия на космический аппарат со стороны Солнца и Земли сведены к минимуму. Точка L2 расположена на линии Солнце — Земля в 1,5 миллионах километров за Землей. В 2016 году велись работы в соответствии с Техническим заданием и планом-графиком работ.

2.7 Проект МВН

Монитор Всего Неба — эксперимент по измерению рентгеновского фона в жестком рентгеновском диапазоне. Эксперимент будет установлен на Российский сегмент МКС. В 2016 году велись работы в соответствии с Техническим заданием и планом-графиком работ. Основной объем работ связан с методами измерений космического рентгеновского фона, начиная с первых ракетных и стратостатных экспериментов, и заканчивая измерениями, проведенными при помощи орбитальных рентгеновских обсерваторий последнего поколения. Особое внимание уделено проблемам учета вклада фоновых событий в измерения инструментов рентгеновского и жесткого рентгеновского диапазонов. Начато производство летного образца.

2.8 ОКР «Обстановка»

Проведение летных испытаний эксперимента «Обстановка-1» на МКС.

2.9 ОКР «Резонанс»

Продолжались работы по созданию научных приборов (технологические образцы и КДО).

2.10 ОКР «МКА-ФКИ-4»

Завершен этап по созданию и испытаниям технологических образцов.

2.11 ОКР «Луна-глоб» и «Луна-ресурс»

Продолжались работы по созданию научных приборов (технологические образцы и КДО),

2.12 ОКР «Экзомарс-ПП»

Разрабатывается прибор МЭГРЭ для измерений квазипостоянного и переменного магнитного поля (до 40КГц) на поверхности Марса для посадочной платформы.

Звездные датчики

- 1. Звездные датчики, комплекс многозональной спутниковой съемки КМСС, сканер береговой зоны СБЗ, комплекс оперативного мониторинга Горизонт для КА Метеор 2.0, 2.1, 2.2, 3.0, Метеор-МП
- 2. Датчики гида телескопа для проекта Спектр-УФ
- 3. Звездные датчики, ССОИ для проекта Спектр-РГ
- 4. Звездные датчики, служебная телевизионная система СТС-Л, лунная стерео телевизионная камера ЛСТК, оптическая система уклонения от препятствий для проектов Луна-Ресурс, Луна-Глоб
- 5. Звездные датчики, видеокамера для стыковки, автоматическая система оптической навигации для пилотируемых транспортных кораблей (ПТК)
- 6. Служебная телевизионная система для проекта Экзо-Марс

3. Инициативные проекты

3.1 Способ обнаружения наличия микробной биомассы земного типа на космических телях

Проведена работа по созданию бортовой научной аппаратуры для выявления биомассы микробных сообществ в природных грунтах. Проведены эксперименты по измерению биомаркеров. В ходе отработки методики к известным биомаркерам Ca/K, P/S был были добавлены содержания N и C, на основе чего был проведён трёхмерный многофакторный анализ данных. Также введение дополнительных параметров обеспечило более высокую достоверность определения типа пробы.

Были проведены экспериментальные работы с грунтами, культурами и спорами бактерий. В связи с тем, что наиболее достоверной моделью марсианских грунтов являются грунты полярных областей, с образцами арктических грунтов были проведены отдельные эксперименты по выявлению и экстрагированию микроорганизмов. В этом направлении была разработана методика, позволяющая верно отождествлять культуры бактерий и отличать их от проб другого типа. По результатам этих работ была получен патент на служебное изобретение «Способ обнаружения наличия микробной биомассы земного типа на космических телах», №2586778, дата начала отсчета срока действия патента: 17.03.2015, опубликован: 10.06.2016. Авторы: Манагадзе Г.Г., Воробьева Е.А., Лучников К.А., Сафронова А.А., Чумиков А.Е., Манагадзе Н.Г.

3.2 Лабораторных экспериментов по исследованию физики ударных процессов

Проведён ряд опытов на метательной установке ЦНИИМАШ, проведена обработка данных лабораторных экспериментов по исследованию физики ударных процессов. В этих опытах, проводимых на метательной установке ЦНИИМАШ, алмазные ударники, ускоренные до 7 км/с воздействовали на мишень из нитрата аммония. Анализ продуктов синтеза показал, что в плазменном факеле удара происходят абиогенные процессы обеспечивающие: синтез протеиновых аминокислот, в частности глицина, аланина и серина; нарушение зеркальной симметрии аланина с избытком L-энантиомеров над D, достигающий величины отношения 2,2. со «знаком» асимметрии, совпадающим с биоорганической; синтез протеиновых полипептидов с массой до 1300 а.е.м, которые могут рассматриваться как предвестники ферментов.